Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.

نویسندگان

  • Akira Nakamizo
  • Frank Marini
  • Toshiyuki Amano
  • Asadullah Khan
  • Matus Studeny
  • Joy Gumin
  • Julianne Chen
  • Stephen Hentschel
  • Giacomo Vecil
  • Jennifer Dembinski
  • Michael Andreeff
  • Frederick F Lang
چکیده

The poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor. Because it has been suggested that circulating bone marrow-derived stem cells can be recruited into solid organs in response to tissue stresses, we hypothesized that human bone marrow-derived mesenchymal stem cells (hMSC) may have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. To test this, we isolated hMSCs from bone marrow of normal volunteers, fluorescently labeled the cells, and injected them into the carotid artery of mice bearing human glioma intracranial xenografts (U87, U251, and LN229). hMSCs were seen exclusively within the brain tumors regardless of whether the cells were injected into the ipsilateral or contralateral carotid artery. In contrast, intracarotid injections of fibroblasts or U87 glioma cells resulted in widespread distribution of delivered cells without tumor specificity. To assess the potential of hMSCs to track human gliomas, we injected hMSCs directly into the cerebral hemisphere opposite an established human glioma and showed that the hMSCs were capable of migrating into the xenograft in vivo. Likewise, in vitro Matrigel invasion assays showed that conditioned medium from gliomas, but not from fibroblasts or astrocytes, supported the migration of hMSCs and that platelet-derived growth factor, epidermal growth factor, or stromal cell-derived factor-1alpha, but not basic fibroblast growth factor or vascular endothelial growth factor, enhanced hMSC migration. To test the potential of hMSCs to deliver a therapeutic agent, hMSCs were engineered to release IFN-beta (hMSC-IFN-beta). In vitro coculture and Transwell experiments showed the efficacy of hMSC-IFN-beta against human gliomas. In vivo experiments showed that treatment of human U87 intracranial glioma xenografts with hMSC-IFN-beta significantly increase animal survival compared with controls (P < 0.05). We conclude that hMSCs can integrate into human gliomas after intravascular or local delivery, that this engraftment may be mediated by growth factors, and that this tropism of hMSCs for human gliomas can be exploited to therapeutic advantage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Evaluation of In Vitro Differentiation of Cardiomyocyte-like cells Derived from Human Bone Marrow Mesenchymal Stem Cells

Purpose: To investigate the in vitro differentiation process of cardiomyocyte-like cells derived from human bone marrow mesenchymal stem cells under the influence of 5-azacytidine (5-aza). Materials and Methods: After purification, human bone marrow mesenchymal stem cells were exposed to 5-aza at a concentration of 5 μmol for 5 weeks to induce cardiomyocyte differentiation. To induce differenti...

متن کامل

Use of Undifferentiated Cultured Bone Marrow-Derived Mesenchymal Stem Cells for DDF Tendon Injuries Repair in Rabbits: A Quantitative and Qualitative Histopathological Study

Objective- To investigate the effect of intratendinous injection of bMSCs on the rate and extent of tendon healing after primary repair in a rabbit model. Design- Experimental study. Animals- Twenty seven skeletally mature New Zealand white rabbits weighing 1.8- 2.5 kg were used. Twenty rabbits were used as the experimental animals, and seven others were used as a source of bone marrow-derived ...

متن کامل

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

Calcitriol modulates the effects of bone marrow-derived mesenchymal stem cells on macrophage functions

Objective(s):Some evidence showed that calcitriol has an important role in regulating growth and differentiation of mesenchymal stem cells (MSCs). However, the interaction between mesenchymal stem cells and macrophage is not clear yet.  The current study was done to investigate the in vitro effects of calcitriol on the interactions between bone marrow-derived MSCs and rat macrophages. Material...

متن کامل

Emergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract

Objective(s): Nowadays much effort is being invested in order to diagnose the mechanisms involved in neural differentiation. By clarifying this, making desired neural cells in vitro and applying them into diverse neurological disorders suffered from neural cell malfunctions could be a feasible choice. Thus, the present study assessed the capability of fetal brain extract (FBE) to induce rat bon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 65 8  شماره 

صفحات  -

تاریخ انتشار 2005